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Abstract. We show that an approximate solution to the amended non-linear Balitsky-Kovchegov evolution
equation which was formulated for hard (large Q2) QCD processes, can be extended to provide a good
description of photoproduction and soft hadronic (non perturbative) reactions.

PACS. 12.38.Aw – 13.60.Hb

1 Introduction

Further proof that the linear QCD evolution equations fail
to describe the DIS data for low values of Q2 has recently
been provided by the ZEUS collaboration [1]. See Fig. 1.
For values of Q2 ≥ 1 GeV 2 the ZEUS NLO QCD fit pro-
vides an excellent description of the data, however, as Q2

becomes smaller the discrepancy between the predictions
and the data increases.

The reason for this is well known, and is due to the fact
that in the linear evolution equations DGLAP and BFKL,
the splitting functions only incorporate the production of
partons (gluons). GLR [2] in their classical paper pointed
out that when the density of partons becomes sufficiently
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Fig. 1. F2 data at very low Q2 compared to ZEUS-S NLO
QCD fit, from [1]

large (that they overlap), one has to include non-linear
(annihilation) processes in the evolution equations. A re-
cent application of the ideas of GLR using the dipole for-
malism has been suggested by Balitsky [3] and Kovchegov
[4] (which we will denote by BK). The advantage of the
BK equation is that:

(i) it accounts for saturation effects due to high parton
densities;

(ii) it sums higher twist contributions;
(iii) it allows one to extrapolate to small values of Q2

(large distances).

2 Amended non-linear BK equation

The BK equation can be written in the form [5]

dÑ(x01, b, Y )
dY

=
CF αs

π2

∫
ρ

d2x2
x2
01

x2
02 x2

12

· ( 2 Ñ(x02, b, Y ) − Ñ(x02, b, Y ) Ñ(x12, b, Y ) ) (1)

where Ñ(r⊥, b, Y ) denotes the imaginary part of the am-
plitude of a dipole of size r⊥ elastically scattered at impact
parameter b, i.e.

Ñ(r⊥, b, Y ) = Imael
dipole(r⊥, b, Y ). (2)

Y = ln(1/xBJ) denotes the rapidity. In (1) the linear term
corresponds to the LO BFKL evolution, while the non-
linear negative term is responsible for unitarization.

A deficiency of the BK equation is that it does not con-
tain evolution in Q2, and therefore lacks the correct short
distance behaviour. To remedy this we have introduced a
correcting function ∆Ñ(r⊥, b, Y ) which accounts for the
DGLAP evolution in Q2. Our full solution therefore con-
sists of the sum of two terms

N(r⊥, b, Y ) = Ñ(r⊥, b, Y ) + ∆Ñ(r⊥, b, Y ) (3)
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Full details of the calculation are contained in [5], where
we have simplified the treatment of the dependence on the
impact parameter b. We solve for the initial condition at b
= 0, and then restore b dependence by assuming factoriza-
tion and that the dipole profile function inside the target

is given by a Gaussian distribution S(b) = e− b2

R2 for all
b. This is obviously an over simplification (see discussion
in Sect. 5), and the true impact parameter dependence of
N(r⊥, b, Y ) is far more complex.

The deep inelastic structure function F2 is related to
the dipole cross section (defined in (2))

F2(xBJ , Q
2) =

Q2

4π2

∫
d2r⊥

∫
dzP γ∗

(Q2; r⊥, z)

· σdipole(r⊥, xBJ) (4)

Where P γ∗
(Q2; r⊥, z) denotes the probability of the de-

cay of a virtual photon having four momentum Q2 into
a colourless dipole (qq̄ pair) of size r⊥, with the quark
(anti-quark) taking a fraction z (1-z) of the virtual pho-
ton’s momentum.

3 Numerical solution of the equation for DIS

In making our fit we include all available data satisfying
the following criteria 10−7 ≤ xBJ ≤ x0BJ = 10−2 and
Q2 ≥ 0.04 GeV 2. We solve (1) as an evolution equation
in rapidity with a fixed grid in r⊥ (= 2/Q GeV) space and
a dynamical step in rapidity. We fit to 345 data points for
F2(xBJ , Q

2), and obtain an overall χ2/df ≈ 1. In [5] we
also compare to data on the logarithmic slopes of F2 i.e.

dF2
dlnQ2 and dlnF2

d(ln1/x) . The values that we obtained for λ =
dlnF2

d(ln1/x) were λ ≈ 0.07 for Q2 = 0.05 GeV 2 and xBJ =
10−5, increasing to λ ≈ 0.3 for Q2 = 150 GeV 2 and xBJ =
4.10−2. i.e. our formalism was successful in describing not
only the short range (large Q2) data but also the “soft”
data ( at very low Q2 ) where the traditional Pomeron
intercept is ≈ 0.08.

4 Extension of BK formalism to
photoproduction

The surprising results discussed above, that with the
amended BK equation we found an excellent description
of all DIS data for 0.05 ≤ Q2 ≤ 200 GeV 2 prompted the
question, whether this formalism could also successfully
describe soft processes e.g. photoproduction?

To extend our formalism to photoproduction [6], it is
necessary to make the following alterations:
(i) We need to introduce a finite mass as a cutoff for the
r⊥ integration in (4), we take this parameter as mq (the
quark mass).
(ii) The variable x (= xBJ) is not defined for γ-p scatter-
ing, and we relate x to the energy by introducing a non-
perturbative scaleQ2

0, and taking x = Q2 + Q2
0

W 2 . To reduce
the number of free parameters we have set Q2

0 = 4 m2
q.

Fig. 2. γ-p and DIS cross-sections at very low Q2. Solid line
VQ and dotted line SR parametrization for low energy contri-
bution (see text for details)

On fitting to the high energy photoproduction data we
find a value of mq = 0.15 GeV. In the colour dipole for-
malism one can only hope to reproduce the asymptotic en-
ergy dependence i.e. the Pomeron contribution. We also
need to include a non-singlet (NS) term to account for
lower energy (higher x) contributions. We test two possi-
ble forms for the NS term:

1) Based on Valence Quark Model (VQ):

FV Q
2 = (

Q2

1 GeV 2 )(1+β) · (1 GeV 2 + µ2)
(Q2 + µ2)

·
∑

i=u,d

e2i q
V
i (Q2 = 1 GeV 2) (5)

We freeze the CTEQ6 valence quark contributions at
Q2 = 1 GeV 2, and on fitting to data, the best fit param-
eters are β = 0 and µ2 = 0.13 GeV 2.

2) Based on exchange of Secondary Reggeons (SR):

σγp
SR = f(0)

M̃2

(Q2 + M̃2)
· (
s

s0
)αR

with αR = −0.45 and s0 = 1 GeV 2, f(0) denotes the
residue at Q2 = 0. Fit results in f(0) = 0.19 mb and
M̃2 = 2 GeV 2.

The results of the fit to photoproduction and low Q2

DIS data with the two alternate low energy contributions
are shown in Fig. 2.

5 The BK formalism and soft hadronic
processes

Based on the successful extension of our BK formalism to
photoproduction (Sect. 4), we also applied the procedure
to soft hadronic interactions [7]. This necessitated adapt-
ing the basic formula (4) of the dipole model, and hypoth-
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Fig. 3. K+p and π−p cross-sections. The full line is the predic-
tion in our model and the dotted line using the Golec-Biernat
Wüsthoff dipole parametrization [10]

esizing that the hadron-proton cross-section is given by:

σhadron−proton(x) =
∫
d2r⊥ | ψh(r⊥) |2 σdipole(r⊥, x)

(6)
where ψh(r⊥) represents the wave function of the hadron
which scatters off the target proton, and the energy de-
pendence is given by x = Q2

0
W 2 , with Q2

0 being an additional
non-perturbative scale.

For the hadronic wave functions we use the form sug-
gested by the Heidelberg group, Dosch et al. [8]. The
hadronic transverse wave function is taken as a simple
Gaussian, where the square of the wave function is given
by

| ψh(r⊥) |2= 1
πS2

M

exp(− r⊥
S2

M

) (7)

and SM is a parameter related to the meson size. We have
used Sπ = 1.08 fm and SK = 0.95 fm, which is related
to the electromagnetic radii. The exotic channel K+ p
has no secondary Regge contributions, while for the π−
p reaction we have added a secondary contribution á la
Donnachie and Landshoff [9]. Our results are displayed in
Fig. 3, for more details regarding the fit shown in Fig. 3
we refer the reader to [7].

For a baryon projectile, we assume that the baryon
is constituted of two colour dipoles, one dipole formed
around two quarks, and the second dipole from the cen-
tre of mass of these two quarks to the third quark in the
baryon. Our results for p̄-p and p-p scattering are shown
in Fig. 4. The assumed Gaussian dependence in b, corre-
sponds to a e−t behaviour of the differential cross-section.
The full lines in Fig. 4 show that this is a poor description,
a much better fit is obtained by assuming that the momen-
tum transfer dependence is of a “form factor” dipole type,
which transforms to a Bessel function K1 dependence in
impact parameter space. See [7] for more details.

p p

Fig. 4. p̄p and pp total cross-sections. The full lines are the
model predictions with a Gaussian profile for the impact pa-
rameter dependence. The dashed line for a K1 profile and dot-
ted line for the GBW dipole model

6 Conclusions

We have shown that our approximate solution to the
amended non-linear BK equation which was formulated
for hard (large Q2) processes [5], can be successfully ex-
tended to describe photoproduction and soft (non per-
turbative) hadronic reactions. Two outstanding problems
remain:
(i) the impact parameter dependence of the colour dipole.
The assumption of factorization in b space, plus impos-
ing a Gaussian like behaviour in b (for all values of b),
is obviously naive, as can be judged from the results we
have obtained for p̄p scattering. The search for the correct
impact parameter dependence of the solution to the BK
equations continues.
(ii) the form of the hadronic QCD wave function. The
form suggested by [8], is only a first approximation and
should be improved.

I would like to thank my colleagues Jochen Bartels,
Genya Levin, Michael Lublinsky and Uri Maor for a most
enjoyable collaboration, the fruits of which are presented
here.
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